DOES 3'-CYTIDINE MONOPHOSPHATE BOUND TO RIBONUCLEASE A ACOUIRE SYN-CONFORMATION?

M. Ya. KARPEISKY and G. I. YAKOVLEV

Institute of Molecular Biology, USSR Academy of Sciences, Moscow, USSR

Received 23 January 1977

1. Introduction

The accepted mechanism of action of RNAase A, consistent with the X-ray diffraction studies of RNAase and its nucleotide complexes, suggests an anti-conformation of the nucleotide in the substrate enzyme complex [1]. The recent PMR investigations of 3'-CMP-RNAase A complex in solution were interpreted to indicate that the nucleotide is in anticonformation at pH \leq 6, but it has to be in synconformation at pH > 6. Since the maximum reactionrate is found at pH \sim 7, the authors consider such a change in the conformation as functionally significant [2]. Assuming base orientation to be directly related to the conformation of the ribose-ring, one can presume that syn-orientation of the base implies a planar-conformation of the ribose-ring. The strainenergy thus induced by RNAase A in the substrate molecule could be utilized to increase the rate of the reaction [2]. However, this determination of baseorientation about the glycoside-bond seems ambiguous, since the conclusions were based exclusively on the analysis of the H₁ chemical-shifts of the 3'- and 5'-CMP bound to the enzyme.

The nuclear Overhauser effect measurements have proved to be an effective tool for evaluating the conformation of free 3'-CMP in solution and when bound to RNAase [3,4]. Our present work employs NOE in order to compare directly the nucleotide conformation of the 3'-CMP-RNAase A complex at pD-values of 5.0 and 6.7. If syn-anti isomerization

Abbreviations: NOE nuclear Overhauser effect, RNAase A bovine pancreatic ribonuclease, PMR proton magnetic resonance

of 3'-CMP in the complex were the case, the conformation of 3'-CMP bound to the enzyme should be significantly different at these pD values, since $pK \sim 6$ was assigned to the isomerization [2].

2. Materials and methods

Chromatographically pure samples of RNAase A and 3'-CMP (sodium salt) were used. The exchangeable protons of RNAase A were replaced with deuterium. To this end, the protein sample was dissolved in D_2O (concentration 0.2%) and was kept at pD 3.5 and a temperature of 30°C for two days, then the solution was lyophilized.

NMR Samples were prepared with 0.02 M RNAase solutions and 0.016 M or 0.012 M solutions of 3'-CMP at pD either 5.0 or 6.7. The substances were dissolved in 0.2 M NaCl in D₂O (pD 5.5). The 'pD' (uncorrected pH-meter reading) was adjusted with 1 M NaOD or DCl to 5.0 or 6.7.

The free nucleotide concentration in the complex solutions did not exceed 3%, as the binding constant for 3'-CMP to RNAase A equals 7.5×10^3 M and 5.0×10^3 M at pH 5.0 and 6.7, respectively [5]. The NMR spectra were obtained at 100 MHz using a Varian spectrometer HA-100D at 30°C. The experimental technique for the NOE measurements has been described previously [3,6]. The computation of the NOE-values $f_{\rm H_{1'}}$ (H₆) as a function of the torsional glycosidic-angle was performed as was described in our earlier publication, taking into account that correlation-time for the dipole—dipole interaction of nucleotide protons $(\tau_{\rm c})$ was equal to 3.0×10^{-8} s [4]. To calculate $\tau_{\rm c}$, we used known experimental data on

the nucleotide resonance line-width for 3'-CMP bound to RNAase [7], and the original equation for the estimation of relaxation time (T_2) was employed [8].

3. Results and discussion

The determination of the nucleotide conformation in the 3'-CMP-RNAse A complex, defined by the torsional glycosidic angle $\varphi_{\rm CN}$, was carried out by measuring the NOE between H₆ and H_{1'} protons, which depends strongly on $\varphi_{\rm CN}$. The NOE enhancements were recorded for the H_{1'} protons upon saturation of the H₆ proton-line of the nucleotide (fig.1), and were found to be equal to -0.06 ± 0.02 (pD 5.0) and to -0.04 ± 0.02 (pD 6.7). The analysis of the NOE data was based on the theoretical correlation between the NOE-values $f_{\rm H_{1'}}$ (H₆) and the angle $\varphi_{\rm CN}$ (fig.2). The calculations were performed assuming that both the base and the ribose-ring of the 3'-CMP are rigidly bound to the protein.

The distances between $H_{1'}$ and H_6 protons at different φ_{CN} values were obtained using data on the structure of the 3'-CMP in the crystalline state when

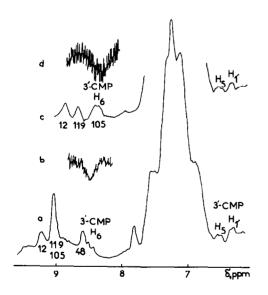


Fig.1. ¹H-NMR- and NOE-spectra of 3'-CMP-RNAase A complex. Aromatic absorption-region of the complex at pD 5.0 (a) and pD 6.7 (c). NOE for H_{1} ' upon saturation of H_{6} at pD 5.0 (b) and pD 6.7 (d).

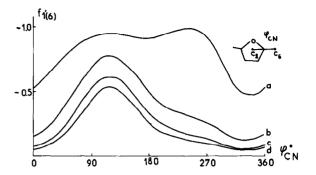


Fig. 2. The NOE enhancements for $H_{1'}$ of 3'-CMP bound to RNAase A upon saturation of H_{6} computed as a function of glycosidic torsion angle. No interaction between $H_{1'}$ and any of protein-protons is assumed (a). $H_{1'}$ interacts with one proton (b), two protons (c), and three protons (d) of the enzyme, which are situated at a distance of 2.4 Å. The correlation-time for the dipole—dipole interaction of nucleotide-protons (τ_{c}) of 3'-CMP in the complex is equal to 3.0×10^{-8} s [4].

the ribose ring was in 3'-endo-conformation [9]. NOE-Values calculated for 3'-CMP having a planar ribose-ring, geometry of which in the crystalline state was given in [10], were similar to those for 3'-endo ribose. Consequently, the selected conformation of the ribose-ring did not affect the accuracy of the computation.

It is clear from the data obtained that the NOE enhancement-values $f_{\rm H_{1'}}$ (H₆) for the 3'-CMP-RNAase A complex at pD 5.0 and 6.7 are similar. The theoretical correlation enables one to find that the corresponding angle $\varphi_{\rm CN}$ is equal to $330 \pm 25^{\circ}$, and two or three protein-protons are located quite near the H_{1'} nucleotide-proton. The calculated angle $\varphi_{\rm CN} = 330^{\circ}$ (or either $\varphi_{\rm CN} = -30^{\circ}$) shows that 3'-CMP in the complex is in the anti-conformation at both pD values. The similarity of the NOE-values at pD 5.0 and pD 6.7 can be taken as an indication that the corresponding $\varphi_{\rm CN}$ -values lie within the 50°-range (stipulated by accuracy of measurements). In the case of syn-conformation, one should expect to find $f_{\rm H_{1'}}$ (H₆) \leq -0.34.

Gorenstein and Wyrwicz concluded, having studied the pH-dependency of H₆-, H₅- and H₁-resonances of the 3'-CMP and 5'-CMP bound to RNAase A, that the 3'-CMP in the complex underwent the pH-dependent transition from anti- to syn-conformation

[2]. They assumed a priori that the $H_{1'}$ chemical-shift depends mostly on the base carbonyl-group orientation in relation to H_{1'} (keto-group anisotropy-effect) and the protein influence on H₁'-resonance of a nucleotide in each of the complexes studied is either identical or does not exist at all. As a matter of fact, however, according to the X-ray diffraction study of the enzyme-nucleotide complexes [1] and the data obtained for the complexes in solution [4], the ribose-ring is indeed involved in the direct interaction with the protein in the enzyme—nucleotide complex. Moreover, we have shown that, at pD 5.5, the C2-Hproton of His-12 in the complex is positioned at about 3.6 Å from the $H_{1'}$ -proton of 3'-CMP, i.e., the imidazole ring of His-12 is adjacent to the protons in question [4]. At pD \sim 6, the His-12-residue of the complex is charged positively. Therefore, slight variations in orientation of the imidazole-ring of His-12 in relation to the ribose should cause alterations in the H₁'-proton chemical-shift – due to the change in the distance to the charged-group and to the change of the anisotropic influence of its ring-current.

Thus, our results demonstrate that in the 3'-CMP-RNAsse A complex, the nucleotide base has an *anti*-orientation in respect to the ribose-ring within the pD-range 5.0-6.7. Consequently, the 'conformational'

RNAsse A mode of action suggested by Gorenstein and Wyrwicz [2] cannot be reconciled with the experimental data on the 3'-CMP—enzyme complex structure.

References

- [1] Richards, F. M. and Wyckoff, H. W. (1970) in: The Enzymes 4, 647-806, Academic Press, New York.
- [2] Gorenstein, D. G. and Wyrwicz, A. (1974) Biochemistry 13, 3828-3836.
- [3] Karpeisky, M. Ya. and Yakovlev, G. I. (1975) Bioorg. Khim. 1, 749-757.
- [4] Karpeisky, M. Ya. and Yakovlev, G. I. (1976) Bioorg. Khim. 2, 1221-1230.
- [5] Anderson, D. G., Hammes, G. G. and Walz, F. G. (1968) Biochemistry 7, 1637-1645.
- [6] Tumanyan, V. G., Mamaeva, O. K., Bocharov, A. L., Ivanov, V. I., Karpeisky, M. Ya. and Yakovlev, G. I. (1974) Eur. J. Biochem. 50, 119-127.
- [7] Gorenstein, D. G. and Wyrwicz, A. (1974) Biochem. Biophys. Res. Commun. 59, 718-724.
- [8] Abraham, A. (1961) in: The Principles of Nuclear Magnetism, p. 292, Clarendon Press, Oxford.
- [9] Furberg, S., Peterson, C. S. and Pomming, C. (1965) Acta Crystallogr. 18, 313-321.
- [10] Coulter, C. L. (1973) J. Amer. Chem. Soc. 95, 570-575.